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SUMMARY

Cobamides are members of the vitamin B12 family of
cofactors that function in a variety of metabolic pro-
cesses and are synthesized only by prokaryotes.
Cobamides produced by different organisms vary
in the structure of the lower axial ligand. Here we
explore the molecular factors that control specificity
in the incorporation of lower ligand bases into coba-
mides. We find that the cobT gene product, which
activates lower ligand bases for attachment, limits
the range of lower ligand bases that can be incorpo-
rated by bacteria. Furthermore, we demonstrate that
the substrate specificity of CobT can be predictably
altered by changing two active site residues. These
results demonstrate that sequence variations in
cobT homologs contribute to cobamide structural
diversity. This analysis could open new routes to en-
gineering specific cobamide production and under-
standing cobamide-dependent processes.

INTRODUCTION

Many environmentally and industrially important microbial pro-

cesses such as methanogenesis, acetogenesis, and reductive

dechlorination are dependent on corrinoids, a class of cofactors

produced solely by a subset of prokaryotes (Roth et al., 1996;

Banerjee and Ragsdale, 2003). Corrinoids are modified tetrapyr-

roles that contain a centrally bound cobalt atom (Roth et al.,

1996). Corrinoids that contain an upper and lower ligand are

termed cobamides. Cobalamin 1, also known as vitamin B12

(Figure 1A), is the best-studied cobamide, and is an essential mi-

cronutrient formost animals including humans (Roth et al., 1996).

Whereas humans are thought to have a specific requirement for

cobalamin 1, 16 different cobamides with structural variability in

the lower ligand (Figure 1B) have been described (Renz, 1999).

Most microbes described to date produce only one to two

different cobamides when grown in pure culture (Kräutler et al.,

1988; Stupperich et al., 1989, 1990; Keck and Renz, 2000).

Although the factors that limit the range of cobamides produced

by an organism remain unclear, previous studies have shown

that different cobamides may not be functionally equivalent as

cofactors for cobamide-dependent enzymes (Ford et al., 1955;
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Barker et al., 1960a, 1960b; Chan and Escalante-Semerena,

2011; Yi et al., 2012; Mok and Taga, 2013).

The de novo biosynthesis of a cobamide requires approxi-

mately 30 gene products (Warren et al., 2002). The attachment

of the lower ligand base to the cobamide precursor GDP-cobina-

mide (GDP-Cbi 10) is the last step in cobamide biosynthesis. This

process has been studied most extensively in Salmonella enter-

ica (Roth et al., 1996). Prior to attachment, the lower ligand base

is activated by the CobT enzyme by the transfer of a phosphor-

ibose moiety from nicotinate mononucleotide or a related com-

pound to form an a-glycosidic linkage (Figure 1C) (Friedmann,

1965; Friedmann and Harris, 1965; Cameron et al., 1991; Trze-

biatowski and Escalante-Semerena, 1997). The phosphoribosy-

lated base is subsequently attached to GDP-Cbi 10 by CobS,

and the phosphate group is removed by CobC to form the

cobamide (Figure 1C) (Roth et al., 1996; Maggio-Hall and Esca-

lante-Semerena, 1999; Zayas and Escalante-Semerena, 2007).

Homologs of cobT are present in nearly all bacterial genomes

that contain the complete corrinoid biosynthesis pathway

(Rodionov et al., 2003). However, in organisms that produce

cobamides by an aerobic pathway, the cobT homolog is termed

cobU (Roth et al., 1996). Two additional cobT homologs, termed

arsA and arsB, have been described in the bacteriumSporomusa

ovata. These genes together encode a heterodimeric enzyme

responsible for the activation of phenolic lower ligand bases

(Chan and Escalante-Semerena, 2011).

In this work, we investigate the molecular factors that limit the

range of cobamides that can be produced by a single bacterial

species. Two hypotheses are tested to address this question.

First, the range of lower ligands that can be attached to form co-

bamides may be limited by the substrate specificity of the CobT

enzyme. Alternatively, the cobamides produced by an organism

may be limited solely by the availability of potential lower ligands.

Evidence in favor of the first hypothesis comes from our previous

observations of corrinoid biosynthesis in the Sinorhizobium

meliloti bluB mutant. Si. meliloti bluB is unable to synthesize

5,6-dimethylbenzimidazole (DMB, the lower ligand of cobalamin

1) and instead produces the incomplete corrinoid GDP-Cbi 10

rather than incorporating intracellular adenine (Ade) to produce

pseudo-B12 6 (adeninyl cobamide, [Ade]Cba) (Campbell et al.,

2006). Similarly, Lactobacillus reuteri does not produce cobal-

amin 1 when DMB is provided and instead produces only [Ade]

Cba 6 (Santos et al., 2007). The second hypothesis is supported

by previous studies demonstrating the ability of several bacteria

to attach a variety of exogenously provided lower ligands (Ford

et al., 1955; Perlman andBarrett, 1958; Kamikubo andMatsuura,
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Figure 1. Structures of Cobamides and Lower Ligands
(A) Structure of cobalamin. The upper ligand, R, is a methyl or 50-deoxyadenosyl group in the cofactor forms and a cyano group in the vitamin form. The lower

ligand, DMB, is indicated by the box.

(B) Structures of cobamide lower ligands. The name of each compound and the abbreviation for the corresponding cobamide are given below each structure.

(C) The lower ligand attachment pathway. The pathway for the activation and attachment of DMB to form cobalamin is shown with the names of the Sa. enterica

enzymes given. CobT catalyzes the activation of DMB by the attachment of a phosphoribose moiety derived from nicotinate mononucleotide to form a-ribazole

phosphate. The CobS and CobC enzymes catalyze the attachment of the activated base to the cobamide precursor GDP-cobinamide (GDP-Cbi 10) and

dephosphorylation of the product to form cobalamin, respectively. NaMN, nicotinic acid mononucleotide; GDP, guanosine diphosphate; GMP, guanosine

monophosphate; Pi, inorganic phosphate.

See also Figure S1.
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1969; Trzebiatowski and Escalante-Semerena, 1997; Maggio-

Hall and Escalante-Semerena, 1999). For example, Sa. enterica

produces [Ade]Cba 6 and 2-methyladenylcobamide 7 ([MeAde]

Cba), and Sp. ovata produces phenolylcobamide 8 ([Phe]Cba)

and p-cresolylcobamide 9 ([Cre]Cba) when cultured without a

lower ligand base, but both can produce benzimidazolyl coba-

mides when benzimidazole bases are provided (Stupperich

and Eisinger, 1989; Stupperich et al., 1989, 1990; Keck and

Renz, 2000; Anderson et al., 2008; Newmister et al., 2012; Mok

and Taga, 2013). In addition, X-ray crystallography studies of

Sa. enterica CobT and Sp. ovata ArsAB have demonstrated the

ability to bind a variety of lower ligand bases in their active sites

(Cheong et al., 1999, 2001, 2002; Newmister et al., 2012).

Currently, the literature as a whole does not support one hypoth-

esis over the other.

Here we test these hypotheses by examining the ability of five

phylogenetically diverse bacteria (Figure S2A available online) to

attach a variety of exogenously supplied lower ligand bases. In

addition to Si. meliloti, L. reuteri, and Sa. enterica, which are dis-

cussed above, we have investigated lower ligand attachment in

Veillonella parvula, a sequenced relative of Sp. ovata (Gronow

et al., 2010), and found that V. parvula also produces [Cre]Cba

9. Using Si. meliloti as a genetic host, we examine the role of

cobT homologs in determining the range of lower ligands that
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can be attached. We also include Dehalococcoides mccartyi in

this study, which we previously found is capable of attaching

some of the benzimidazoles investigated here, despite its

inability to synthesize a corrinoid or lower ligand base de novo

(Yi et al., 2012). Our results show that the range of lower ligands

that can be attached is controlled by both the availability of lower

ligand bases and the substrate specificity of CobT.

RESULTS

Guided Biosynthesis in Four Bacteria Shows that a
Limited Set of Lower Ligand Bases Can Be Incorporated
into Cobamides
The bacteria Si. meliloti, Sa. enterica, L. reuteri, and V. parvula

were chosen as model organisms to investigate the range of

lower ligands that can be attached to form cobamides. The

cobamides produced by Si. meliloti, Sa. enterica, and L. reuteri

have previously been identified as cobalamin 1, [Ade]Cba 6

and [MeAde]Cba 7, and [Ade]Cba 6, respectively (Keck and

Renz, 2000; Campbell et al., 2006; Santos et al., 2007). To

confirm that these cobamides are synthesized by our laboratory

strains, corrinoids were extracted and analyzed from cultures of

each organism. High-performance liquid chromatography

(HPLC) (Figure 2) and liquid chromatography-tandem mass
lsevier Ltd All rights reserved



Figure 2. Native Cobamides Produced by Bacteria in This Study

HPLC analysis of corrinoid extracts from cultures of the indicated bacteria is

shown. Numbers correspond to the compounds shown in Figure 1. The

identity of each numbered peak was determined by LC-MS/MS.

Figure 3. Corrinoids Produced by Guided Biosynthesis in Si. meliloti

bluB

HPLC analysis of corrinoid extracts of anSi. meliloti bluBmutant cultured in the

presence of the indicated lower ligand base is shown. Numbered peaks were

verified by LC-MS/MS.
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spectrometry with multiple reaction monitoring (LC-MS/MS)

(data not shown) demonstrated that the expected cobamides

were present.

Sp. ovata is known to produce phenolyl cobamides due to the

activity of the ArsAB enzyme (Stupperich and Eisinger, 1989;

Stupperich et al., 1989; Chan and Escalante-Semerena, 2011).

As the genome sequence of Sp. ovata was not available at the

time, we tested whether V. parvula, a sequenced (Gronow

et al., 2010) relative of Sp. ovata, might also produce phenolyl

cobamides. HPLC analysis of corrinoid extracts from

V. parvula shows that this bacterium produces a pair of corrinoid

species that coelute with [Cre]Cba 9 extracted from Sp. ovata

cultures (Figure 2). LC-MS/MS analysis confirmed these to be

[Cre]Cba 9 by comparison of both retention time and m/z (data

not shown). Surprisingly, an additional corrinoid in the extract

from V. parvula was identified as benzimidazolylcobamide 4

([Bza]Cba) by LC-MS/MS and comparison to a standard

prepared in Sa. enterica. As such, V. parvula is the only

organism known to synthesize both phenolyl and benzimidazolyl

cobamides.

Wenext examined the ability of these organisms to incorporate

lower ligand bases provided in the culture medium, a process

known as guided biosynthesis. Each of the lower ligand bases

shown in Figure 1B (excluding 2-methyladenine) was tested for

incorporation into cobamides in each bacterium by culturing in

media containing the lower ligand base followed by corrinoid

extraction and analysis. A representative HPLC analysis of corri-

noids extracted from Si. meliloti is shown in Figure 3. An Si.

meliloti bluBmutant was used for the guided biosynthesis exper-

iment because this strain does not produce the lower ligandDMB

(Campbell et al., 2006; Taga et al., 2007). HPLC (Figure 3) and LC-

MS/MS analysis (data not shown) demonstrated that Si. meliloti

bluB attached each of the five benzimidazoles to form the corre-

sponding benzimidazolyl cobamides. However, no cobamides

were detected when Ade, Phe, or Cre was provided. LC-MS/
Chemistry & Biology 20, 1265–1
MS analysis revealed that the only corrinoids present in these

extracts were mono- and dicyano forms of GDP-Cbi 10, a coba-

mideprecursor lackinga lower ligand thatwepreviouslydetected

in cultures of Si. meliloti bluB (Campbell et al., 2006). The lower

ligand incorporation profiles for Sa. enterica, L. reuteri, and

V. parvula were also analyzed. The results of these experiments,

as well as previously published results for the bacterium Dc.

mccartyi (Yi et al., 2012), are summarized in Table 1. Sa. enterica

is capable of incorporating adenine in addition to each of the

five benzimidazoles, but was not capable of incorporating the

phenolic compounds, in agreement with previous findings

(Cheong et al., 2001; Chan and Escalante-Semerena, 2011).

L. reuteri could incorporate only adenine, whereas V. parvula

incorporated all of the compounds tested with the exception of

adenine (Table 1). The failure of L. reuteri to incorporate other

lower ligand bases does not appear to be due to an inability of

the molecules to enter the cell, as we detected an average

of 105 ± 2 pmol/OD600 of free DMB from the cell-pellet fraction

of three L. reuteri cultures grown with 5 mmol DMB. Together,

these results indicate that, with the exception of L. reuteri, each

bacterium can incorporate multiple lower ligands to form coba-

mides, although only Sa. enterica and V. parvula were capable

of incorporating multiple classes of lower ligands.

The Si. meliloti cobU Mutant Can Be Complemented by
Heterologous Expression of cobT Homologs
The results of the guided biosynthesis experiments suggest that

the range of lower ligands that can be attached by a bacterium

is not controlled solely by the availability of different lower

ligand bases in the environment. Next, we examined the influ-

ence of cobT on lower ligand selectivity, as cobT acts first in

the lower ligand attachment pathway (Roth et al., 1996). Specif-

ically, we tested whether expression of cobT homologs from

different bacteria could influence the range of lower ligands
274, October 24, 2013 ª2013 Elsevier Ltd All rights reserved 1267



Table 1. Cobamides Produced by Guided Biosynthesis in Five Bacteria

Lower Ligand Base Provided

DMB MeBza OMeBza Bza OHBza Ade Phe Cre

Si. meliloti + + + + + � � �
Sa. enterica + + + + + + � �
L. reuteri � � � � � + � �
V. parvula + + + + + � + +

Dc. mccartyia + + + + ND ND ND ND

+, corrinoid detectable by HPLC; �, corrinoid peak not detectable by HPLC or LC-MS/MS; ND, not determined. See also Figure S3 and Table S1.
aData reported by Yi et al. (2012) based on cultures supplemented with cobinamide and a lower ligand base.
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that can be attached. cobT homologs were expressed in an Si.

meliloti strain with a mutation in cobU (the cobT homolog in Si.

meliloti). The cobU mutant constructed for this study was un-

able to grow on LB medium without cobalamin 1 supplementa-

tion due to the cobalamin 1 requirement of the ribonucleotide

reductase enzyme (Campbell et al., 2006; Taga and Walker,

2010). This cobalamin 1 auxotrophy of the cobU strain and

the bluB cobU double mutant strain could be rescued by the

addition of cobalamin 1 to the growth medium or by expression

of the Si. meliloti cobU gene on a plasmid. To test whether cobT

homologs from other bacteria could function in Si. meliloti, cobT

homologs from Si. meliloti, Dc. mccartyi, Sa. enterica, L. reuteri,

and V. parvula were expressed on a plasmid in an Si. meliloti

bluB cobU strain in the presence of DMB. These Si. meliloti

strains are indicated hereafter by the shorthand Sm cobTDm
+,

in which two-letter abbreviations for each organism are used

(Si. meliloti, Sm; Dc. mccartyi, Dm; Sa. enterica, Se; L. reuteri,

Lr; V. parvula, Vp). All of the Si. meliloti strains expressing

cobT homologs from Dc. mccartyi, Sa. enterica, and L. reuteri

were viable and produced cobalamin 1 when DMB was pro-

vided, indicating that these cobT homologs were functional.

The ability of Sm cobTLr
+ to grow in the presence of DMB is

considered later.

An examination of the V. parvula genome revealed the pres-

ence of three different cobT homologs, Vpar_1456, Vpar_1457,

and Vpar_1602, whereas a single cobT homolog was present

in each of the other bacterial genomes we examined (except

Dc. mccartyi, which contains two cobT genes with identical

sequences) (Seshadri et al., 2005; Gronow et al., 2010). How-

ever, only one of the three cobT homologs from V. parvula,

Vpar_1602, complemented the cobalamin 1 auxotrophy of the

Si. meliloti bluB cobU strain. Vpar_1456 and Vpar_1457 are

located adjacent to one another, similar to the recently identified

Sp. ovata cobT homologs arsA and arsB (Chan and Escalante-

Semerena, 2011). To test whether Vpar_1456 and Vpar_1457,

like Sp. ovata arsA and arsB, function when expressed together,

both genes were cloned on a single plasmid. Coexpression of

these genes rescued the cobalamin 1 auxotrophy of the bluB

cobU strain in media containing DMB. Based on the function

of these genes as described below, and because the predicted

protein sequences share 46.7% and 32.6% identity with Sp.

ovata arsA and arsB, we refer to Vpar_1457 and Vpar_1456 as

arsA and arsB, respectively. The degree of relatedness among

the cobT homologs examined in this study is shown in the

pairwise identitymatrix in Table S1 and the phylogenetic analysis

in Figure S2A.
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Expression of cobT Homologs Alters the Lower Ligand
Attachment Profile of Si. meliloti

To test whether the expression of cobT from other bacteria could

alter the range of lower ligand bases that can be incorporated

into cobamides, guided biosynthesis assays were performed in

the Si. meliloti bluB cobU strains expressing each cobT homo-

log. A representative HPLC analysis of this assay performed

with Sm cobTSe
+ and Sm arsABVp

+ is shown in Figure 4. Sm

cobTSe
+ was found to incorporate the five benzimidazoles as

well as adenine, but was unable to attach phenol or cresol

(Figure 4A), whereas Sm arsABVp
+ could attach all of the bases

provided except adenine (Figure 4B). These results match the

results of the guided biosynthesis study for Sa. enterica and

V. parvula, respectively (Table 1), and demonstrate that these

cobT homologs are sufficient to specify the range of lower

ligands that can be attached.

In analyzing the results above, we observed differences in the

amount of incorporation of each substrate, as variable levels of

GDP-Cbi 10 were present in the corrinoid extracts (Figure 4).

We reasoned that these differences likely reflect both the overall

degree of complementation of the heterologously expressed

cobT genes aswell as differences in the ability of CobT homologs

to activate or attach each lower ligand. The amount of each coba-

mide produced by guided biosynthesis as a percentage of the

total extracted corrinoids was used as an indication of the level

of incorporation of each lower ligand (Table 2). We found that

the lower ligand bases that could be incorporated by each bacte-

rium (Table 1)mirrored the lower ligand incorporation profile ofSi.

meliloti expressing their respective cobT homologs (Table 2). An

exception to this trend was observed in L. reuteri. The inability of

L. reuteri to incorporate benzimidazoles was not transferred to

Sm cobTLr
+, because the Sm cobTLr

+ strain was able to attach

all five benzimidazoles such that GDP-Cbi 10 made up less

than half of the total corrinoids in each culture (Table 2). Although

adenine was the only lower ligand incorporated by L. reuteri, it

appears to be incorporated less efficiently than the benzimid-

azoles in Sm cobTLr
+ (Table 2). Interestingly, both Sm cobTSe

+

and Sm cobTLr
+ were capable of producing [Ade]Cba 6 without

the exogenous addition of adenine, indicating that intracellular

adenine pools are available for use as lower ligands in Si. meliloti

as has previously been observed in Sa. enterica (Anderson et al.,

2008). This is illustrated in Figure 4A, where [Ade]Cba 6 was

detected in all corrinoid extracts from Sm cobTSe
+.

The two cobT homologs of V. parvula exhibited distinct lower

ligand incorporation profiles when expressed individually in

Si. meliloti. Whereas both Sm cobTVp
+ and Sm arsABVp

+ were
lsevier Ltd All rights reserved



Figure 4. Guided Biosynthesis in Si. meliloti

bluB cobU Expressing cobT Homologs

HPLC analysis of corrinoids extracted from (A) Sm

cobTSe
+ and (B) Sm arsABVp

+ containing the indi-

cated lower ligand bases. The identities of the

numbered peaks were verified by LC-MS/MS.

Asterisks indicate the addition of 0.1 mM cobal-

amin 1 to cultures to support growth.
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capable of incorporating all of the benzimidazole lower ligands,

Sm arsABVp
+ was the only strain that also incorporated the

phenolic substrates p-cresol and phenol (Figure 4B; Table 2).

Sm cobTVp
+ also incorporated adenine, although to a lesser

extent than either Sm cobTSe
+ or Sm cobTLr

+, even though

adenine incorporation was not observed in V. parvula (Table 1).

Together, these results indicate that the range of lower ligands

that can be incorporated into cobamides in a given organism is

heavily influenced by cobT.

Site-Directed Mutagenesis of Sa. enterica cobT Alters
Lower Ligand Attachment Specificity
The results presented above demonstrate that expression of

cobT homologs from different bacteria in Si. meliloti allowed it

to produce cobamides that wild-type Si. meliloti is incapable of

producing. This finding led us to investigate the sequence varia-

tions among cobT homologs that may contribute to the observed

differences in substrate specificity. A multiple sequence align-

ment of the CobT homologs revealed that the residues at posi-

tions equivalent to Ser80 and Gln88 in Sa. enterica CobT covary

with the ability to attach adenine (Figure 5A). CobT enzymes with

Ser andGlu at these positions allow the incorporation of adenine,

whereas those that do not incorporate adenine have Phe/Tyr/Trp

and Met, respectively (Figure 5A). These residues were previ-

ously implicated in the stabilization of adenine in the active site

of Sa. enterica CobT by interacting with the amino group (N10)

and the N3 ring nitrogen of adenine (Cheong et al., 2001).

To test the hypothesis that residues Ser80 and Gln88 of

Sa. enterica CobT influence the ability to activate adenine, we

performed site-directed mutagenesis on Sa. enterica cobT to

change these residues to Phe and Met, respectively, which

are found at equivalent positions in Si. meliloti CobU (Figure 5A).

Plasmids containing cobTSe with the S80F, Q88M, or S80F/

Q88M mutations were introduced into the Si. meliloti bluB

cobU strain. These strains were cultured in the presence of a

limiting amount of DMB to compare the level of attachment

of DMB and intracellular adenine. HPLC analysis of corrinoid

extracts from these cultures showed that Sm cobTSe
+ pro-

duced approximately equal amounts of [Ade]Cba 6 and cobal-

amin 1 under these conditions (Figure 5B). Sm cobTSe S80F

produced 2.7-fold less [Ade]Cba 6 than Sm cobTSe
+ but

produced a similar level of cobalamin 1, after normalizing for
Chemistry & Biology 20, 1265–1274, October 24, 2013 ª
culture density (Figure 5B). The Q88M

mutation impacted both DMB and

adenine incorporation, because 2.4-fold

less [Ade]Cba 6 and 2.3-fold more

cobalamin 1 was produced by Sm

cobTSe Q88M compared to Sm cobTSe
+

(Figure 5B). The effects of the S80F and
Q88M mutations appeared to be additive, as the Sm cobTSe
S80F/Q88M double mutant produced 3.5-fold less [Ade]Cba

6 and 2.6-fold more cobalamin than Sm cobTSe
+ (Figure 5B).

These results provide further evidence that differences in

cobT sequence are responsible for the observed differences

in lower ligand incorporation. The active site residues Ser and

Gln are not the sole determinants of adenine activation, how-

ever, because Si. meliloti strains expressing cobU genes with

the reciprocal mutations were unable to incorporate adenine

(data not shown).

Altered Lower Ligand Specificity Results in a Loss of
Viability in Si. meliloti

In the course of our experiments, we observed that the growth of

the Si. meliloti strains varied according to the lower ligand base

provided, and supplementation with cobalamin 1 was required

for growth when certain strains were supplied with adenine or

phenolic compounds (Figure 4). This result suggested that

some of the cobamides produced did not support growth in Si.

meliloti. To measure the effect of different cobamides on growth,

the OD600 of Sm cobTSe
+ cultures was measured following

growth to stationary phase in minimal media containing each

lower ligand base that could be incorporated into a cobamide.

We found that DMB, 5-methylbenzimidazole (MeBza), and benz-

imidazole (Bza) were equivalent in supporting the growth of Si.

meliloti, whereas cultures supplied with 5-methoxybenzimida-

zole (OMeBza), 5-hydroxybenzimidazole (OHBza), or adenine

reached a lower final culture density (Figure 6A). This result indi-

cates that cobalamin 1, [MeBza]Cba 2, and [Bza]Cba 4 support

the growth of Si. meliloti to a greater extent than [OMeBza]Cba 3,

[OHBza]Cba 5, or [Ade]Cba 6.

To verify that the phenotype observed when lower ligand

bases were added to cultures was due to the effect of the coba-

mides produced rather than differences in the efficiency of incor-

poration of the lower ligands, an Si. meliloti cobD bluB strain,

which is incapable of producing corrinoids or DMB, was cultured

in the presence of a representative purified cobamide from each

structural class. Cultures grown with [Ade]Cba 6 or [Cre]Cba 9

led to 3.7- and 13-fold lower final culture densities, respectively,

than those grown with cobalamin 1 (Figure 6B). These results

demonstrate that different cobamides are not functionally equiv-

alent in Si. meliloti.
2013 Elsevier Ltd All rights reserved 1269



Table 2. Cobamides Produced by Guided Biosynthesis in Si. meliloti bluB cobU Expressing cobT Homologs

Lower Ligand Base Provideda

DMB MeBza OMeBza Bza OHBza Ade Phe Cre

Sm cobUSm
+ 100 100 2.0 27 4.3 0 0 0

Sm cobTDm
+ 64 14 40 33 0.61 0 0 0

Sm cobTSe
+ 96 38 22 40 NAb 56 0 0

Sm cobTLr
+ 100 76 59 75 NA 9.7c 0c 0c

Sm cobTVp
+ 63 94 100 100 41 1.0 0 0

Sm arsABVp
+ 42 4.6 11 30 3.9c 0c 1.0c 11c

aNumbers represent the level of incorporation of each lower ligand base as a percentage of the total corrinoids present.
bNA, not available. Percentage is not available due to coelution of [OHBza]Cba and [Ade]Cba.
cCultures were grown with cobalamin to achieve higher growth, but cobalamin present in the corrinoid extracts was not used in the calculations.
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DISCUSSION

It has historically been recognized that different prokaryotes pro-

duce a variety of different cobamides, and that the structural dif-

ferences among these cofactors are almost entirely limited to the

lower ligand (Brown et al., 1955; Ford et al., 1955). Although

diverse cobamides have been observed in environments such

as the human intestine, bovine rumen, and contaminated

groundwater, the microbes that produce cobamides have

been observed to synthesize only one or two different coba-

mides when grown in pure culture (Brown et al., 1955; Kräutler

et al., 1988; Stupperich et al., 1989, 1990; Keck and Renz,

2000; Allen and Stabler, 2008; Girard et al., 2009; Y. Men,

E.C.S., S. Yi, T.S.C., R.H. Allen, M.E.T., and L. Alvarez-Cohen,

unpublished data). This study addresses the molecular basis of

lower ligand selectivity in a representative set of bacteria. We

have identified the cobT gene as being responsible for limiting

the range of lower ligands that can be incorporated. Specificity

in CobT activity could be a mechanism of limiting the production

of cobamides to those that function as cofactors for a particular

organism.

Our genetic system in Si. meliloti allowed us to examine the in-

fluence of substrate specificity by CobT on cobamide synthesis

in the absence of factors that may be unique to each organism.

We found that the range of lower ligands that could be attached

by the Si. meliloti strains expressing cobT homologs mirrored

that of the originating bacteria in nearly all cases. The fact that

multiple lower ligand bases can be incorporated by guided

biosynthesis suggests that the structure of the cobamide pro-

duced by each organism is governed in part by the availability

of lower ligand bases in the cell. Additionally, our results show

that the range of lower ligands that can be incorporated is limited

by substrate specificity in cobT, and that cobT homologs from

different organisms have distinct specificity profiles. A notable

exception to this pattern was L. reuteri, which was incapable

of incorporating benzimidazoles by guided biosynthesis,

whereas expression of L. reuteri cobT enabled the incorporation

of benzimidazoles in Si. meliloti. It is possible that in L. reuteri

another enzyme, such as CobS, prevents the incorporation

of benzimidazoles into cobamides. This hypothesis could be

addressed experimentally by expressing the L. reuteri cobS

gene in a Si. meliloti cobS mutant.

Our results showed that the major differences in substrate

specificity among the cobT homologs are in the ability to activate
1270 Chemistry & Biology 20, 1265–1274, October 24, 2013 ª2013 E
adenine and phenolic compounds, whereas the activation of

benzimidazoles is common to all of the cobT homologs tested.

Differences in the preferences of each CobT enzyme for each

lower ligand substrate are investigated in more detail in

the accompanying paper (Hazra et al., 2013) in this issue of

Chemistry & Biology. The activation of phenolic compounds

appears to be a specialized function of the arsA and arsB gene

products, because none of the other CobT homologs in this or

previous studies is capable of activating phenolic compounds

(Cheong et al., 2001, 2002; Chan and Escalante-Semerena,

2011). This is likely due to significant differences in the reactivity

required for the formation of an O-linked rather than an N-linked

glycosidic bond. In addition, consistent with previous studies of

Sp. ovata ArsAB, V. parvula and Sm arsABVp
+ can produce both

benzimidazolyl and phenolyl cobamides by guided biosynthesis

(Chan and Escalante-Semerena, 2011; Newmister et al., 2012).

Given that V. parvula naturally produces both [Cre]Cba 9 and

[Bza]Cba 4, and that Sm arsABVp
+ is capable of activating benz-

imidazoles in addition to phenolic compounds, it is puzzling that

V. parvula possesses an additional CobT homolog that activates

only benzimidazoles (and adenine, to a limited extent). A

possible explanation is that V. parvula cobT and arsAB are differ-

entially expressed in order to produce varying ratios of [Cre]Cba

9 and [Bza]Cba 4 under different environmental conditions.

We found that the ability to activate adenine for the production

of [Ade]Cba 6 in Si. meliloti is limited to only three of the cobT

homologs. In the case of Sa. enterica and L. reuteri, this is

consistent with their production of [Ade]Cba 6. Our observation

that Sm cobTVp
+ produces a small amount of [Ade]Cba 6 is

unexpected, considering the absence of [Ade]Cba 6 in the

V. parvula corrinoid extracts. This may be explained either by

an inability to detect low levels of [Ade]Cba 6 that may be present

in the V. parvula extract or an insufficient concentration of free

adenine in V. parvula. The production of a relatively low level of

[Ade]Cba 6 by Sm cobTVp
+ may be due to the presence of Tyr

and Gln in V. parvula CobT at positions equivalent to residues

S80 and Q88 in Sa. enterica CobT. Previously, it was proposed

that hydrophilic residues are important for stabilizing adenine

in the binding pocket and that the hydrophobic residues Y79

and M87 at analogous positions in Sp. ovata ArsA are important

for stabilizing phenolic lower ligand bases (Cheong et al., 2001;

Newmister et al., 2012). If additional CobT enzymes are found

that share this pattern, it may be possible to use this analysis

in the bioinformatic prediction of cobamide structures based
lsevier Ltd All rights reserved



Figure 5. Site-Directed Mutagenesis of Sa. enterica CobT Leads to

Altered Lower Ligand Incorporation

(A) Multiple sequence alignment of CobT homologs that are capable of acti-

vating adenine when expressed in Si. meliloti (Sa. enterica CobT, L. reuteri

CobT, and V. parvula CobT) and those that do not activate adenine (Si. meliloti

CobU, Dc. mccartyi CobT, and V. parvula ArsA). Only the region surrounding

the two amino acid residues targeted for site-directed mutagenesis (arrows) is

shown. ArsB is not included because it lacks a true active site (Newmister

et al., 2012).

(B) HPLC analysis of corrinoids extracted from Sm cobTSe
+ (WT), Sm cobTSe

S80F, Sm cobTSe Q88M, and Sm cobTSe S80F/Q88M cultures grown in the

presence of 0.5 mM DMB. The ratio of [Ade]Cba 6 to cobalamin 1 is shown in

parentheses.

See also Figure S2.
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on cobT sequences. Indeed, analysis of these positions in

several CobT homologs reveals a co-occurrence of aromatic

residues (Phe/Tyr/Trp) with Met, or H-bonding residues (Ser/

Thr/Cys) with Gln or Val (Figure S2B).

We speculate that the ability to exclude certain lower ligand

bases from incorporation into cobamides is a mechanism of pre-

venting an organism from producing a cobamide that it cannot

use. Based on this hypothesis, specificity in cobT would be

particularly important for the exclusion of adenine, which is pre-

sent intracellularly but is used as a lower ligand only by a subset

of bacteria. This idea is supported by our observation that the

production of [Ade]Cba 6 in Sm cobTSe
+ leads to poor growth

(Figure 6A). A counterexample to this case is Sp. ovata, which

can incorporate benzimidazoles as cobamide lower ligands but

is incapable of using benzimidazolyl cobamides for the meta-

bolism of certain carbon sources (Stupperich et al., 1990; Mok

and Taga, 2013). The absence of a mechanism of excluding

benzimidazoles from incorporation into cobamides in Sp. ovata
Chemistry & Biology 20, 1265–1
suggests that Sp. ovata does not produce benzimidazoles or

encounter them in the environment.

The results of this study suggest that diversity in cobamide

structure is achieved in nature by a combination of the biosyn-

thesis or availability of various lower ligand bases and themolec-

ular specificity in the lower ligand activation gene cobT. Because

the structure of cobamides has been shown to affect cofactor

function in many cases, specificity in cobT likely ensures that

bacteria produceonly cobamides that canbeused for theirmeta-

bolic processes.However, the reasonwhysuchdiversity in coba-

mide structure exists in nature remains unclear. The use of lower

ligand bases that also function in other cellular processes, such

as purines, or are products of amino acid catabolism, such as

phenolic compounds, is relatively common among bacteria

(Stupperich and Eisinger, 1989; Anderson et al., 2008). It is there-

fore puzzling that somebacteria havededicated pathways for the

biosynthesis of benzimidazoles that, to the best of our knowl-

edge, only function as cobamide lower ligands. Substrate spec-

ificity in CobT could be explained by the requirement of certain

metabolic processes for specific cobamides (Yan et al., 2012,

2013; Yi et al., 2012; Mok and Taga, 2013). In addition, diversity

in cobamide structure may be driven by a need for cobamide-

producing organisms to limit the cobamide remodeling or

salvaging activity of other organisms. Further biochemical and

ecological studieswill be necessary to explore thesepossibilities.

SIGNIFICANCE

Cobamides, which include vitamin B12, are essential cofac-

tors for many organisms, both eukaryotes and prokaryotes,

in a variety of metabolic pathways, but are produced only by

a subset of prokaryotes. Cobamides are distinguished by

the structure of the lower ligand, and different cobamides

are not necessarily functionally equivalent as cofactors.

Although 16 structurally distinct cobamides have been

described, organisms typically synthesize only one or two

different cobamides when grown in pure culture. Here, we

sought to identify the molecular factors that determine

which cobamides are produced by bacteria. The final steps

in cobamide biosynthesis involve activation of a lower ligand

base and attachment to a cobamide precursor. We utilized

guided biosynthesis assays in four bacteria and found that

a distinct set of lower ligand bases is incorporated by each

organism. Heterologous expression of cobT homologs

from these bacteria and from Dehalococcoides mccartyi in

Sinorhizobium meliloti demonstrated that CobT is respon-

sible for preventing the incorporation of certain lower ligand

bases. Additionally, the Salmonella enterica cobT gene was

engineered by site-directed mutagenesis to lower its affinity

for adenine relative to 5,6-dimethylbenzimidazole, the lower

ligand of vitamin B12. We also report on the potential for pre-

diction of the cobamide biosynthetic capability of microbial

communities based on metagenomic analysis of cobT

homologs. Our results show that both the availability of

lower ligand bases and the substrate specificity of CobT

limit the lower ligands that can be attached to form coba-

mides. Finally, we found that growth is inhibited inSi.meliloti

strains that have been engineered to synthesize alternate

cobamides. Our results suggest that substrate specificity
274, October 24, 2013 ª2013 Elsevier Ltd All rights reserved 1271



Figure 6. Biosynthesis of Nonnative Corri-

noids Affects Growth of Si. meliloti

The OD600 of Si. meliloti cultures following growth

to stationary phase was measured for (A) Sm

cobTSe
+ cultures containing 5 mM indicated com-

pounds and (B) Si. meliloti cobD bluB cultures

containing 1 mM indicated purified cobamides.

Error bars represent the standard error of three

samples.
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in CobT protects bacteria from producing cobamides that

do not support their metabolism. It is important to under-

stand the molecular determinants that underlie cobamide

structural diversity due to the integral role played by coba-

mides in several important microbial communities.

EXPERIMENTAL PROCEDURES

Bacterial Strains and Growth Conditions

Si. meliloti strains were grown at 30�Cwith aeration on LB agar plates contain-

ing 2.5 mMMgSO4 and 2.5 mM CaCl2 (LBMC) or in M9 sucrose medium con-

taining 10 mg/l biotin, 10 mM cobalt chloride, and 1 mg/ml methionine (Maniatis

et al., 1982). When necessary, media were supplemented with antibiotics as

follows: 10 mg/ml tetracycline; 100 mg/ml spectinomycin; 50 mg/ml gentamicin;

and 500 mg/ml streptomycin. Cobalamin auxotrophs of Si. meliloti were

cultured with 10 mM cyanocobalamin when needed. For extraction of corri-

noids from Si. meliloti, 5 ml of M9 was inoculated with a colony of Si. meliloti

grown on LBMC and incubated for 40–50 hr. These cultures were diluted to

an OD600 of 0.02–0.04 in 250 ml M9 and incubated for 48–60 hr.

For extraction of native corrinoids from Sa. enterica serovar Typhimurium

strain LT2, a 500 ml culture was grown anaerobically under an N2 atmosphere

in a minimal medium with ethanolamine as a nitrogen source (Keck and Renz,

2000). For guided biosynthesis experiments, Sa. enterica cultures were grown

aerobically in NCE medium supplemented with 1 mM dicyanocobinamide and

the indicated lower ligand bases with 1,2-propanediol as the carbon source

(Gray and Escalante-Semerena, 2009). L. reuteri DSM 20016 was cultured

anaerobically in vitamin B12-free assay medium (Difco) at 37�C under an atmo-

sphere of 95% N2 and 5% CO2 at pH 6.3. V. parvula DSM 2008 was cultured

anaerobically in a modified Veillonellamedium at 37�C under 95% N2 and 5%

CO2 at pH 7.0 in which 1.5 g/l casamino acids were substituted for individual

amino acids (Lopes and Cruz, 1976). For all guided biosynthesis experiments,

the media were supplemented with 5 mM lower ligand base unless otherwise

noted. OD600 measurements were recorded using a BioTek Synergy 2

multiwell plate reader. Corrinoids were purified for feeding experiments from

cultures of Sa. enterica or Sp. ovata and quantified as described (Gray and

Escalante-Semerena, 2009; Yi et al., 2012).

To determine the ability of DMB to enter L. reuteri cells, three 10 ml cultures

of anaerobic MRS medium containing 5 mmol DMB were inoculated with

L. reuteri to an OD600 of 0.03. Following 24 hr of growth, cells were harvested

by centrifugation at 9,0003 g and washed in 1 ml of 0.85% saline, and the cell

pellet was resuspended in 1ml methanol. The lysate was applied to a Sep-Pak

C18 cartridge (Waters), and the cartridge was washed with 6 ml of 20%

methanol and eluted with 2 ml of 80% methanol. The extract was dried under

vacuum and resuspended in 0.25 ml deionized H2O. The DMB in the extract

was quantified by HPLC as described below.

Genetic and Molecular Techniques

To construct theSi. meliloti cobU::SpcR strain, a 1.3 kb genomic fragment con-

taining the Si. meliloti cobU gene and flanking region was amplified by PCR
1272 Chemistry & Biology 20, 1265–1274, October 24, 2013 ª2013 Elsevier Ltd All rights res
and cloned into pUC19 (Yanisch-Perron et al.,

1985) at the EcoRI and PstI restriction sites. An

SpcR fragment obtained by BamHI digestion of

pHP45U (Fellay et al., 1987) was cloned into a

BglII site located within the cobU open reading

frame (ORF). The EcoRI-PstI fragment containing
cobU::SpcR was transferred to the suicide plasmid pK19 mob sacB (Schäfer

et al., 1994). The resulting plasmid was introduced onto the Si. meliloti

chromosome by triparental mating (Leigh et al., 1985). Screening for the

cobU gene replacement and loss of the pK19 mob sacB plasmid were per-

formed as described (Schäfer et al., 1994; Taga and Walker, 2010). Double

mutant strains were constructed by M12 phage transduction (Finan et al.,

1984).

For expression of cobT homologs inSi. meliloti, theSa. enterica trp promoter

sequence was introduced at the BglII and EcoRI restriction sites in the vector

pMP220 to produce pMP220+Ptrp. To construct plasmids expressing cobT

homologs from Si. meliloti, Sa. enterica, and Dc. mccartyi, genomic regions

including the cobT ORF and 20 bp of upstream sequence were amplified by

PCR from purified genomic DNA (Chen and Kuo, 1993) and cloned into

pMP220+Ptrp at the XbaI and PstI restriction sites. To avoid potential codon

usage incompatibility, the L. reuteri cobT ORF was synthesized (GeneArt) to

contain codons optimized for expression in Si. meliloti (Puigbò et al., 2007,

2008) and fused with the 25 bp sequence directly upstream of the Si. meliloti

cobU ORF (Figure S3) and cloned into pMP220+Ptrp. A genomic sequence

spanning the V. parvula arsA and arsB ORFs and 20 bp upstream of

arsA was amplified by PCR from the V. parvula genome and cloned into

pMP220+Ptrp. The Sa. enterica cobT S80F and Q88M mutations were con-

structed by PCR-mediated site-directed mutagenesis (Weiner et al., 1994).

All plasmids were introduced into Si. meliloti cobU::SpcR bluB::gus GmR by

triparental mating (Leigh et al., 1985).

Phylogenetic Analysis of CobT Sequences

CobT sequences were downloaded from PFAM (Chen et al., 2011) and edited

using BioEdit (Hall, 1999). The phylogenetic tree was obtained from CIPRES

(Stamatakis, 2006; Stamatakis et al., 2008; Miller et al., 2010) and visualized

usingMEGA5 (Tamura et al., 2011). Alignments were prepared usingMUSCLE

(Edgar, 2004). The identity matrix was constructed using BioEdit (Hall, 1999).

More detailed methods may be found in Supplemental Experimental

Procedures.

Corrinoid Extraction and Analysis

Corrinoids were extracted from cell pellets essentially as described (Yi et al.,

2012). Briefly, cell pellets were resuspended in methanol with 0.1% potassium

cyanide. Following cell lysis, clarification, and removal of solvent, the extract

was applied to a Sep-Pak C18 cartridge (Waters) and eluted in 1.8 ml of 75%

methanol. The sample was dried at 45�C under reduced pressure, resus-

pended in 0.5 ml distilled water, and filtered through a 10,000 MWCO filter

(Pall). Samples were stored at �20�C prior to analysis.

An Agilent 1200 series HPLC system equipped with a UV-diode array detec-

tor was used to analyze the extracted corrinoids. Samples were injected onto

an Agilent SB-Aq 4.5 3 150 mm column with 5 mm pore size at a flow rate of

1 ml/min with mobile phases of A, 0.1% formic acid in water, and B, 0.1%

formic acid in methanol. The column was maintained at 30�C. Corrinoids

were eluted with a gradient of 25% solvent B for 2 min, 25%–34% solvent B

over 11 min, and 34%–70% solvent B over 3.5 min. LC-MS/MS analysis

was performed using the above LC method on an Agilent 6410 liquid
erved
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chromatograph-triple quadrupole mass spectrometer with multiple reaction

monitoring (Yi et al., 2012).

Synthesis and Purification of 5-Hydroxybenzimidazole

OHBza was synthesized from OMeBza as previously described (Renz et al.,

1993) with some modifications and purified (see Supplemental Experimental

Procedures).

ACCESSION NUMBERS

The GenBank accession numbers for the V. parvula arsA and arsB sequences

are KF615856 and KF615857, respectively.
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three figures, and one table and can be found with this article online at

http://dx.doi.org/10.1016/j.chembiol.2013.08.006.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation grant MCB1122046

to M.E.T. We thank the members of the Taga laboratory and Sydney Kustu for

constructive comments and members of the Taga laboratory for critical

reading of this manuscript. We thank Kenny Mok for providing authentic phe-

nolyl cobamide standards, Andrew Han for his help during phylogenetic anal-

ysis, and Shan Yi and Yujie Men for assistance with LC-MS/MS.

Received: April 1, 2013

Revised: July 1, 2013

Accepted: August 5, 2013

Published: September 19, 2013

REFERENCES

Allen,R.H., andStabler, S.P. (2008). Identificationandquantitationof cobalamin

and cobalamin analogues in human feces. Am. J. Clin. Nutr. 87, 1324–1335.

Anderson, P.J., Lango, J., Carkeet, C., Britten, A., Kräutler, B., Hammock,
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